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ABSTRACT

Given a feasible point for a nonlinear programming problem, we

investigate the structure of the feasible set near that point. Under the

constraint qualification called regularity, we-shov-how to compute the tangent

cone to the feasible set, and to produce feasible arcs with prescribed first

and second derivatives. In order to carry out these constructions, we show

that particular way of representing the feasible set (as a system of

equations with constrained variables) is particularly useful. We e e ".':. _

fairly short proofs of the first-order and second-order necessary optimality
conditions in very general forms, using the arc constructions menti-ned above.
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^VI SIGN!FCINCE AND EXPLANATION

Nonlinear programming is concerned with the problem of minimizing a

function, often fairly smooth, over a set (the so-called feasible set)

described by nonlinear inequality and equality constraints, as well as perhaps

. some bounds or other restrictions on the variables. Problems of nonlinear

programming arise in statistics, in chemical engineering, in economics, and in

many other areas.

Certain basic conditions, called optimality conditions, most be satisfied

by any candidate for a solution of such a problem, provided that the

constraints satisfy a reasonable regularity condition. These conditions

describe the relationship of the derivatives of the function being minimized

to the derivatives of the constraint functions and the set over which the

minimization is being done. They form the basis for most numerical algorithms

for solving such problems.

This paper examines the structure of the feasible set, and introduces

some effective and fairly simple ways of dealing with this set. As a by-

product of these techniques, comparatively simple and straightforward proofs

of the optimality conditions and of related results are given.

f.
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LOCAL STRUCTURE OF FEASIBLE SET S IN NONLINEAR PROGRAMMING, PART Is REGULARITY

Stephen N. Robinson"

1. Introduction: the regularity condition.

This paper deals with solution sets of systems

hlx) = 0
(1.1)

", xeC

where h is a Cr function (r 1) from an open set 9 in VP to le, and where C

is a convex set, not necessarily closed, in 7P. We shall denote the set of all solutions

of (1.1) by C n h1'(0), or briefly by F. One of the main application areas in which

sets like F arise is nonlinear programing, since the constraints of many nonlinear

programing problems either look like (1.1) or can be made to look that way by simple

manipulations such as adding slack variables. Therefore, most of our analysis of 1.1)

will be aimed at establishing results useful in nonlinear programing.

Given a point x0 e F, we often want to know what that part of F near x0  is

like. However, it is hard to tell much about F by looking directly at the nonlinear

system (1.1). Therefore, a natural idea is to simplify (1.1) by linearizing h about

x0 and then to consider the system

h(x0) + h'(xo)(x - x0) = 0
(1.2)

XeC•
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Since h(x O ) . 0 by assumption, the set of solutions of (1.2) is just

x 0 + (C - xO ) n ker h'(xo), where ker hl(xO ) denotes the set {zlh'l(Xo)z - 0). We shall

denote this solution set by LF. Note that LF is a convex set, so we can deal with it

considerably more easily than we can with F.

An implicit assumption behind the construction and use of LF is that near x, LF is

*a good approximation" of F: one thinks, for example, of the tangent space to a smooth

manifold. However, it can easily happen that LF is nothing like F. Consider, for

example, the case with n - 2 and a - 1, in which

h(C,,) :- C I

and

C S- {(~')q~0)

With these definitions, it is clear that F is the origin in K2, while if we take x0

to be the origin then LF - R x (0) - ((1,0)11 e 2). On the other hand, if we take the

same function h but change C to iC, n)jC 2 - i S 0), then F becomes

{((,n)jC2 - n - O while LF becomes the origin. Hence in these two cases F and LF

are not at all alike, and in general we will need some criterion to ensure that LF is

- locally similar to F if we are to use LF to draw conclusions about F.

The criterion we shall use is an extension of the familiar requirement, for syste of

equations, that the derivative of h at x0  carry 3n onto IF . The extension consist.

in taking appropriate account of the presence of the convex set C, and to do this we need

the idea of a tangent cone. Since we shall use this idea later too, we introduce it in a

*fairly general form: if 8 is a subset of I n and x e cl 8, then the (oulLgand)

tangent cone to 8 at x is the set T8 (x) consisting of all right derivatives of arcs

emanating from x with the property that every neighborhood of x meets the intersection

* -: of S with the arc. it is easy to show that a point d belonge to T8(x) if and only if

there are squences ( n } C a, converging to x, and (n ) C (0, -), such that

n (sn - x) converges to d. See, e.g., [2] for more information about tangent cones.

Having the tangent cone, we can now make the extension we mentioned earlier, by

defining regular points for (1.1).

,. -2- #
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D3FINITTONs Let x 0 e C with h(x 0 ) - 0. Then x 0  is a regular point of (1.1) if

hl(x 0 ) carries Tc(xo) onto 11.

it vil be helpful to have soms equivalent forms of regularity available. Three are

given in the next proposition.

PROPOSITION 1.1s Let h and C be as previously defined, with x0 e F. Then the

following are eMuivalents

(a) h'(xo)[TC(x)J - IP (1.3)

(b) h'(%)(aff C) - and ker h'(x) n ri(C - x0 ) (1.4)

where ri denotes relative interior (see [41 for definitions).

(C) 0 e int(h(x0 ) + h'(x 0 )(C - x0 )) , (1.5)

where int denotes interior.

Part (c) of Proposition 1.1 is the form In which regularity was introduced in (31]

part (b) is a generalized version of the well known Nangasarian-Fromovits constraint

qualification 11], and part (a) is used in [21. For our constructions in this paper, we

shall depend primarily on (b).

PROOFs Denote h*(x 0 ) by DI lot 8 be the unit ball of AP and denote its

intersection with aff(C - x0 ) by SC.
4

e(a -> b)s We know Tc(Nx) - cl oone(C - x.) since C is convex: in particular

Tc(xo) C aff(C - xo) so that D(aff C) - If. If (ker D)() ri(C - x0 ) is mpty then the

principal separation theorem 14, Th. 11.31 guarantees the existence of a nonzero w e 1P

such that or each c 4 C, (wD,c- x 0 ) A 0. But then for any z e cl cone(C- x0) - TC(x 0 )

we have (w,Ds) - (wD,z) S 0, so that D[Tc(xo)1 * mm, contradicting (a). It follows

that (her D) n ri(C - xo ) * 0, which proves (b).

(b -, c): If D(aff C) - IP then we know D is an open mapping, so there is a

bounded neighborhood 9 of the origin in aff(C - x0 ) such that DR is a neighborhood of

* the origin in If. Let y e (ker D) n ri(C - x0)i then for som positive

9, 0 y + M C C. Choose a positive 6 small enough that Il C C then

a+ y + 4 C C and thus y + 6W C C - x 0 . But D(y + DN, a neighborhood of the

4 -3-



origin, and therefore D(C -xO) in also a neighborhood of the origin. As f (X0 ) -0,

this proves (C).

(c - a): An Tc(xO) C NoK, (c) implies that DIC(xo)] is a neighborhood of

the origin. But it is also a cone; hence it must be 31. This completes the proof.

With the idea of a tangent cone and the criterion of regularity, we are in a position

to investigate the relationships between LF and F. In Section 2 we introduce a special

coordinate system that is particularly weil suited for this investigation; then in Section

3 we apply this construction to phow that F and LF have the same tangent cone at (I

and to show further that feasible arcs can be constructed with prescribed tangents in L F.

Finally, we apply these arcs to give simple proofs of necessary conditions for optimization

on F.

-4-



2. Construction of a coordinate systel feasible arcs.

Zn this section we show how to set up a special coordinate system that is fitted to

the structure of F near a regular point x0 o Denote aff C by A, and the subspace

parallel to A by K: then we shall first use the implicit-function theorem to identify

that part of A ) h-
1
(0) near x0  with that part of M A ker h'(x 0 ) near 0, under the

regularity hypothesis. Then we shall show how this identification leads to a very simple

way of constructing feasible arcs with prescribed derivatives. These arcs will be applied

in the next section to prove results about tangent cones and optimality conditions.

First, we are going to decompose Vn in a way that employs the subspaces, M and

ker h'lx 0 ), of special importance to us. Let us denote h'(x 0 ) by D. Then since

D(X) - DWaff C) - P by part (b) of Proposition 1.1, we must have

(0} = [D(w)l (ulD*u e m

But then also (in D*) A M - (0), and taking orthogonal complements we have

(ker D) + K - 3. Denote (ker D) K 1 by K, and let J and L be subspaces

complementary to K in ker D and N respectively: then we have

1
n 

= J O K 3 L, J 0 K - ker D, K * . (2.1)

Given the decomposition (2.1), we denote by Pj, PK and PL the projectors from

I? onto the subspaces 3, K, and L, in each case along the other two spaces. Thus

P + PK + PL - 1, and the product of any two of these projectors is the zero operator. We

shall often write PO for P3 + PKv the projector on ker D along L.

We now construct a particular generalized inverse of 0 that will aid us in applying

the implicit-function theorem. Note first that from (2.1) we have Wn = (ker D) 6 L, and

that

DCL) - D(L 0 K) - DX - I.

It follows that D is a bijection from L onto 11, and the generalized inverse that we

want is just the inverse of this bijection. This will be a linear operator D from vP

to 1P having the properties that DD- is the identity of IP, and D'D is the

." projector P1 . To construct it, we can choose any bijection E from VP to L and let

D I- (D)1. The existence of (D)1 in guaranteed since L is independent of

* ) -5-
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ker D, and it is clear that DD" is the identity of is. TO show that D D PL. note

that D-D annihilates ker D, while if I e L, then A - Bv for some v e RP, and then

0DD - D-D3V - E(D) " (DE)V = Iv -X

As n  (ker D) 0 L we must have 6DD - PL, and it follows from this that

I - D-D P0 .

The construction of these subopaces and projectors may be easier to understand if we

' relate the present situation to the well known case of linear programing. There, we have

h(x) - Ax - a, c - 41 h*(x O) -A,

where A is a linear operator from Rn  to RM and a e I'. The regularity hypothesis

that we are using implies in particular that A has full row rank, and there is no loss of

generality in assuming that A is partitioned as [B N], with B a x a and

nonsingular. Then the space of the first a components of I? is clearly of dimension

* m and independent of ker A, and we shall take it to be L. Now for the bijection 3 we

can choose Ia[.], where Im denotes the m x m identity matrix, and if we write D in

place of A we have

D- - glDW)" - - .

Hence

P- D- = IB NJ ' ]

and

PO . I-pL n

The reader will recognize the last n - m columns of P0  as being the edges of the

feasible region along which the simplex method can move away from x0 .

4o



Returning to the nonlinear situation, lot us define a function F i x IP by

F(xy) tm Dh(x) + (I - D'D)x - (x0 + y) (2.2)

As im D7 L and 1 - DD - P0 , the two major terms on the right-hand side of (2.2) lie

in the independent spaces L and ker D. Accordingly, one has F(x,y) - 0 if and only if

Mi) Dh(x) - 0 (that in, h(x) - 0, since ker D - (0)), and

(ii) P 0 x (X0 + y)] - 0 (that is, x - (x0 + y)L).

* Of course, if y e ! then (ii) implies that P 0 (x - N - y, so x - x0 + y + I for some

I e L. Thus, for x e 2 and y e K, P(x,y) - 0 if and only if h(x) - 0 and

x e x0 + y+ L.

if we differentiate (2.2) with respect to x, we find that x(xoY)- for any

* y e R'n . Thus, we may apply the Lmplicit-function theorm to produce neighborhoods U of

the origin in AP and V of xO , and a unique Cr  function x a U + V, such that

x(O) - x 0  and, for each y e U, V(x(y),y) - 0. This, in turn, meant that for each

a e U n x, htx(u)) - 0 and PoIX(m) - W03 - Pon - Pet. To find the derivatives of this

function x, we note that since FVx(y),y) - 0 we have

0 - (x(y)ey)I.0 - Px(x)0)x'(0) + ?y(x 0 +0) - x'(0) -

where we have used the fact that Fx(xO) - 1. Therefore x'(0) - P0 . Now, if r 2 we

can differentiate again to obtain

0 -!:- (x(y)+y)Iy.0 - x(x(y)xy) + Fy(x(Y)eY)JIy 0

*dy 2d

- Fxx(x00)x'(0)x'(0) + FVy(x0 +0)x'(0) + rx(%O)x(0)

+ ryx(x0 ,o)x,(O) + ryy(xoeo) . (2.3)

However, FYX y and Pyy are all zero since the only appearance of y in (2.2) is in

a linear term also, we know F2x(X0 1 O) - I, V,,,(x0 0) - Dh"(xo), and x'(O) - P0 .

Therefore (2.3) yields for arbitrary sts

x(0)(s)(t) - -Dhe(x0)(P0u)(P0 t) . (2.4)

These derivatives can be further simplified if their arguments remain in ker D, since

there P0  acts like the identity.

-7-
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The following theorem describes various properties of x, some of which we have noted

informally above.

THBORIN 2.1: Suggose x0  is a regular point of (1.1) and let D, J, K, L and M be

as previously defined. Then there exist neighborhoods U of 0 in N  and V of x 0

i in Rn, and a unique C function x U + V such that x(0) = x0  and, for each y e U,

h~x(y)] - 0 and P 0 x(y) - (x0 + y)) - 0. one has x'(0) - P0  and, if r k 2,

x"(0)a)(t) - -D-h(x 0)(Pos)(P 0 t) for s,t e Sn.

Note that Theorem 2.1 yields P0 [x(y) - x0 1 = P0 y, so that if y e K then

.0 [x(y) - x01 = y, so that x(y) e x 0 + P0 [xly) - x0 ] + PL(x(y) - x0  e x0 + y + LC x

+ N - aff C. Thus x maps portions of K near 0 to portions of (aff C) n h- 1 (O)

* near x0 . However, we are really interested in F = C n h-1 (0), so we shall next examine

how to keep x(y) in C instead of just in aff C. It turns out that a very easy way to

do this is to investigate arcs in F. Our initial result involves only first derivatives.

%THEOREM 2.2s Le t h be C1  and let x0  be a regular point for (1.1). Let

4 e ri Tc(x0). In order that there exist a C1  arc w(t) in F - C A h-l(0) with

w(O) - x 0  and w(0) - d, it is necessar and sufficient that d e ker h'(x0 ).

* . F (necessity): For all small t we must have h~w(t)] - 0; thus
" d h,(x 0)vIO)

dth[w(t)]It,0 - - h'lx 0)d

(sufficiency): if d 6 ker h'(x0), then since d e ri Tc(Xo) C M, we have d e K.

Also, since

d e ri T c(XO) - ri cl coneCC - x0) - ri cone(C - x0 ) - cone ri(C - x0 )

there exist U 3 0 and c > 0 with Md ri(C - x) and d + CB C C - x0, where

= B A M, the unit ball in M, and where cone 8 denotes the cone generated by the

set S. Now let y(t) z- td then with w := x 0 y we have, for small non-negative t,

w(t) X0 + ;(0)t + (t) • (2.5)

* But

;0) x'(0);(0) - Pod - d

Also, since y(t) remains in K we have h[w(t)] - 0 and w(t) e aff C by Theorem 2.1,

hence w(t) - e 6 N and, since d e K (C M), also the function denoted by o(t) in

i ....-... ,...._.. -,........-.........,.,............... --. . ....- . -
. . . . . . . . . . . . . . . . . . . . .. .. . .; -=-===============.? .:;. - , :2.. : ::;: :; . a ,: ..- ":". -- ; -- " ., -



(2.5) remains in M. Thus

w(t) - 1 [ -u t)O + P'lt(pd + pt'lo(t)]

and for small non-negative t this is a convex combination of points of C - x0, hence

itself a point of C - x0 by convexity. Thus, for all small non-negative t, w(t) e C,

and this completes the proof.

If we are willing to assume that h is C2  instead of only C1 , we can obtain a

C2 arc, and we can prescribe not only its first derivative but also its second.

THEOREM 2.3: Let h be C2 and let x0 be a regular point for (1.1). Let

Se c - x0  tnd a e ri Tc(Xo). In order that there exist a C2  arc wlt) in

F = c n h71 (0) with w(o) = 10, w(0) d d, and Q(0) s a, it is necessary and sufficient

that d e ker h'(x0 ) and

hn(x0 )dd + h'(x 0 )s = 0 • (2.6)

PROOF (necessity)i Theorem 2.2 tells us that we must have d e ker h'(x 0 ). For

(2.6), recall that h(w(t)] - 0 for small non-negative t, so

0 d 2 h~w(t)llt.0 - hn(x0 )dd + h'lx 0 )s
dt

where we have used the facts that w(0) - d and Q(0) - s.

(sufficiency): Suppose d e ker hl(x0 ) and (2.6) holds. For small non-negative t

let

y(t) - td + I t2pos2
Note that s e ri Tc(xo) C H - L, so P0 s e x. but

d e (C - xo )  ker h'( 1 0 ) C (K 0 L) A (J OK) - K, so in fact y(t) 6 K. Let

w :- x 0 y. For small non-negative t we have h[wlt)] - n and w(t) e aff C by Theorem

- 2.1. Also,

and w(0) = x(0)y(0) - Pod - d (since d e K),

~and

*'.'.
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V(o) - x-()y(O)y(o) + x.(o)Y(o)

- -D-hu(x 0 )dd + P2s

- -D-(-hl(x 0 )s) + p0 s

. (P L + PO)a " 0 0

where we have used (2.6), P02 - PC) D-D - PL, and PL + P0 - 1. Hence w has the

prescribed derivatives.

Now from Taylor's theorem we have for small non-negative t,

w(t) - x0 + td + .- t
2s + r(t) * (2.7)2

where r(t) - o(t2 ). Note that since v(t) e aff C and since d e ](C N) and

s e ri Tc(xO) C 1, we must have r(t) e K also. Since

a e ri Tc(xo) = ri cone(C - x0 ) - cone ri(C - x0 )

there exist U > 0 and C > 0 with

g + SN C C- x0

where, as before, 81 - 3 n 1. Rewriting (2.7) as

w(t) -x 0 - (1-t -_[ 1-It2JO + td + 1 !-im + 2It-2 r(t)1 , (2.8)

we see that for small non-negative t the right-hand side of (2.8) is a convex combination

of points of C - x0 , and therefore v(t) e C. But we know h(w(t)) - 0, so w(t) is

feasible, as required. This proves Theorem 2.3.

In this section we have shown how to use regularity to gain substantial amounts of

information about the structure of F near a regular point 10. In the final section we

show how to use this information to compute the tangent cone to F at X0 and to

establish necessary conditions for optimization on F.

-10-



3. Applications: the tangent cone to F1 optimality conditions.

In this section we apply the construction of Section 2 to compute TF(XO) when x 0

is a regular point, and to give simple proofs of the general first-order and second-order

necessary optimality conditions of nonlinear programming. First we consider the tangent

cone.

THEORM 3.1: Let h be C1, and Let x0  be a regular goint for (1.1). Then

TF(XO) - Tc(xo) r ker h'(xO).

PROOF: As F C C, we have TF(XO) C Tc(Xo). if d e TF(XO ) then there is a

sequence {x C F with xn + x0 and, for scme sequence (An} C (O,+m),

A n(X n -x O)  d. For each n we have

0 - h(xn) - h(x,) + h' Ot) (xn- 210) + oix % X0 I)

so

0 " h'l(xo)AX - xO ) + (AnIZ - xoIIxn - iol ollx - xol)

% Taking the limit, we find d e ker h'(xo), and thus TF(NO ) C Tc(%O) n ker h'(xo).

For the opposite inclusion, observe that regularity implies

* ri(C - xO ) n ker h'(xo ) C cone ri(C - xO) n ker h'(x O )

- ri cl cone(C - xO ) r kor h'(xo) - ri Tc(Xo) n ker h'N o ) .

Let d e ri Tc(xo) n ker h(xo). Using Theorem 2.2, construct a C1 arc w(t) in F

with w(O) - x0 ard ;(0) - d. For large n, define xn s w( 1 ) We have xn e F,

and xn + x 0 . Also, with A n :- n we have
I

n (Xn - 3Fo) - n[W(n 1 ) - v(0)) - nl;(O)n- 1 + o(n-)] - d + no(n "1 )
Taking the limit we find that A n(xn - XO )  d, so d e TF(0%). Hence

ri Tc(xO) n ker h'(x O) C TF(XO) . (3.1)

The left side of (3.1) is the nonempty intersection of two relatively open sets, hence in

the relative interior of the intersection of their closures. Accordingly, we have

ri[Tc(x O ) r) ker h' (x,)] C TF(XO)

and since TF(XO) is closed we have

?C(XO) n ker h°(x O ) C T Fx 0 )

This completes the proof.

* -11-
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I

Theorem 3.1 yields a simple proof of the first-order necessary optimality conditions

under the hypothesis of regularity. To see how to construct such a proof, consider the

problem of minimizing f on F, where f is a function from 12 to K.

THEORNI 3.2: Let f and h be C1, and asume x0  s a reMular gont of 1.1.

If x0 is a local minimizer for f on F, then there is some A e SP with

f'l(xO) + h'(x O ) A e -c(x O) .

Here the asterisk denotes the adjoint operator, and N c(xo) is the normal cone to

C at so defined by

CXO) - TC(Xo) (Y ye R"IVz e TCXO), (y'z) S 0)

PROOF: If d e TF(xO), then there are sequences {Xn ) C F and (A n) C (0,+w)

with x. + x 0 and An(Xn - xO ) + d. For all large ns local optimality implies that

0 S f(x n  Mf 0) - f'(xg)(Xn - x 0 ) + o(Ix - x01)

so

0 S fx 0l)Anl(xn - x 0) + (An Xn- xOilx n - x0 1 oix n- x0 l)

Taking the limit we find that f'(x 0 )d ? 0. aM this shows that f'(z1 e -S O(Xt. hlso,

by Theorem 3.1 we have TF(o) - Tc(xo) n ker b(xo), so

HF(XO ) - (TclXO) n ker h(x o )] e 
= cllC(xo) + im h'lxol*]

However, as noted in the proof of Theorem 3.1 the regularity condition implies

[ri Tc(xo) n ker hl(x O ) so by [4, cor. 23.8.11 we find that N C(xo) + im h'(xO)* is

*" closed (since the normal cone to a closed convex cone at the origin Is the polar of that

cone) Bence, for some A e Sm we have

f'(x0 ) + h'l(xo ) ) -Nclx o )

which completes the proof.

We can derive a second-order necessary condition for the problem just considered,

"" under the same regularity hypothesis, if we are willing to assume that f and h are

C2 . This is done in the next theorem, whose proof is based on an unpublished proof of

• VWeinberger (51 for a somewhat different problem.

THtOMIH 3.31 Let f and h be C2 , and sumoose that x 0  is a regular goint of

0.11. If x0  a local mnitizer for f o F, then for each

-12'-12
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d e (C - x0 ) n ker h(x,) with f'(x0)d - 0, there exists A e SP such that

f'(x 0 ) + h'(x0 ) Xe -Nc(Xo)

and

f"(x0 )dd + (),h'(x 0 )dd) a 0

We note that under the hypotheses of this theorem, if d e (C - x0 ) k ker h'(x 0 ) then

the first order condition Implies fe(x 0 )d a 0. Hence we could have substituted

O (x0)d 00 in the statement of the thoerem without changing anything.

PROOF, We first show that for each a e ri Tc(x%) the system

h'(xo)d - 0, h(x)dd 4 h'(xo)s - 0

f'(x0)d - 0, f"(xo)dd + f'(x 0 )s < 0 (3.2)

eC- x ,

is Inconsistent. Indeed, suppose that a e ri Tc(xo) and that (3.2) is consistent. By

Theorem 2.3 there Is a C2  arc w(t) in F with w(O) - xo, ;(O) - d, and 0(0) - s.

Define f 0 w. Thn (0) , #(0) - fl(x)(0) - f'(x 0 )d - 0, and

#€o)- fo(%)(o)w(o) + f,(xo)9(0)

- f(xo)dd + f'(xo)* < 0 .

Bence for small t we have w(t) e F and

f(w(t)- + ;(O)t + 1. ;(o)t2 + o(t)2 ~ 2

- f(xO ) + t (1 #101 + t 2 o(t)] f(xO )

.ince this contradicts the assumption that x0  was a local minimizer for f on F, (3.2)

most be Inconsistent.

The remainder of the proof consists of a separation argument designed to translate the

Inconsistency of (3.2) into a positive statement about the existence of I. Choose

d 6 (C- 10)n ker h'(x0 ) with f'(1 0 )d- 0, and define a linear transformation

,.,xo + x)dd 1
O~(s,O) 8.'

ii +, ix0)S + .(x0)d.

Recall that ri G(Tc(xO ) x +] - G(ri(TC(xO) - +]+) - G([ri TC(xo)l x tint a+]). For any

-13-
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a e ri Tc(xo) and any o > 0, the inconsistency of (3.2) for the given d and s

implies that

" (,o) * (o)n x mnt IL  ri[(OJ x ILI

Hence,

ri O(TclxO) x R,] n ri((O) n x NIL - i

By 14. Th. 11.31 there exist A0 e itu , and Pv e a with (10 v) 0 0, such that for

each a e T(xO), y e R+. and 8 4 IL ,

(l0 1h'(x 0 ) + yh"(x 0 )dd) 
+ vlf*lx018 + Yfx 06d) 1 -  V (3.3)

The form of (3.3) ensures that P 1 0 and V & 0. Also, by choosing Y - 0 in (3.3) we

obtain

(A 1oh'(xo)z) + Vf'(x 0 )a & 0 (3.4)

for each z 6 TC(xO), and by choosing a - 0 and y - 1 we have

(A 0 ,helx 0 )dd) + Vf"(x 0)dd A 0 * (3.5)

if v- 0 then 10 0 0 and, from (3.4), for each 3 6 TC(bo) we have (Ao,h'(x0 )s) 0.

But this means that h'(x0 )(Tc(xo)] 0 31s which contradicts the regularity assumption

(Proposition 1.1). Hence v * 0, so in fact v > 0. if we define A s- AO/v then (3.4)

,, yields f'l(x 0 ) h'(x 0 1 A e -c(x0). end (3.5) yields

fm(x 0 )dd + (.,h'(x*)dd) & 0

This completes the proof.

One might wonder whether we could replace C - I0 in the statement of Theoren 3.3

by Tc(x0). in general, the answer is no. For example, consider f a 2 . a given by
"fl~l.X21 'm X2 . x? with C C R2 defined by C - {lxl x ) , Ls13/2} and let h

be vacuous. With x0 :- (0,0) we have TC(x0 1 - x 3+, Nowever, if we take 4 - (1,0)

then we have fV(x 0 )d - 0 and fo(x0 )dd - -1 < 0, yet the origin i a local minimise of

f on C. The problem here is that there is no feasible C2 are emanating from the origin

with tangent (1,0). Of course, if C were polyhedral then, near x0, C - wo would agree

with TC(XO) , so in that case we could take 4 6 TClXGl.

It is also not very difflault to find examples to show that one cannot in general use

the same for every d In Theorem 3.3. Nowever, if the A appearing in the first

-14-



order condition should happen to be unique then 1 heorm 3.3 would guarantee that that I

would work for all d. Thbis uniqueness is in tact realized in an important special case,

that of nondegeneracy. Th~at special case will be treated in detail in Part 11 of this

paper.
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